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The constants in the functional equation of the Artin L-function can be written as
products of local root numbers and these in turn are defined in terms of local Galois
Gauss sums. It is the arithmetic behaviour of the latter which is determined here in the
tame case. In particular their ideal values are described by local resolvents, and two
types of basic congruences are established. It is also shown that for a given local field the

p
[\ \

— tame Galois Gauss sums can be characterized within that field by their arithmetic
; S properties. In addition a new local proof for inductivity in the tame case is obtained.
O H
=
[~ I
= O NTRODUCTION
O The constants in the functional equation of the Abelian L-functions can in a natural manner be
=w

written as products of local factors, defined in terms of Gauss sums (see Tate’s thesis published in
Cassels & Frohlich (1967)). The existence of a similar local decomposition of the constants in the
functional equation of the Artin L-functions is equivalent to the existence of local constants for
not necessarily Abelian characters of local Galois groups which coincide with the classical ones
in the Abelian case and behave well under character induction. (There is a more general problem
for Weil groups, but we restrict ourselves to Galois groups.)
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142 A.FROHLICH AND M.]J. TAYLOR

This problem was originally stated by Hasse (1954) and Dwork (1956) obtained a solution
modulo # 1. The first to arrive at a complete solution was Langlands. His proof was based on
some new results in representation theory and on some deep and difficult manipulations with
local Gauss sums. Langland’s proof has not actually been published. A shorter proof, going via
the existence of global constants, is due to Deligne (1973), and a variant of Deligne’s proof was
given in Tate’s (1977) Durham lectures. It is these notes of Tate’s which can serve best for the
discussion of the background to our paper.

We shall actually formulate everything in terms of the local Galois Gauss sums 7(y) first
introduced by Martinet (19%77). They are connected with the local root numbers W(y) (i.e. the
local factors of the Artin constants) by the equation

Wx) =T(®)/Ni(0)*

Here y is a not necessarily Abelian character of a local Galois group, ¥ its complex conjugate,
f(x) the conductor and N ()% the positive square root of its absolute norm. Given N{(y), whose
determination is a relatively easier problem, the root numbers (y) and the Galois Gauss sums
7() determine each other. In fact however, while the knowledge of the W(y) does not entail that
of the other two constants, that of the 7(i¥) does. Indeed Nf(x)?is the modulus |7(x)| = |7(¥)| and
so W(y) is the projection of 7(¥) on the unit circle. This is the first reason for our preference for the
Galois Gauss sum. The second one lies in its direct connection with the classical (Abelian) Gauss
sum, which had played such an important réle in many arithmetic contexts and which was used
to define the local Abelian constants in the first place. Our third reason is that — as will be seen —
the underlying arithmetic properties attach naturally to the 7(y) rather than the W (y). Finally
itis the 7(jy) which lie at the basis of the connection with global Galois module structure (Fréhlich
1976) and with local Hermitian Galois module structure (Fréhlich 1977).

Asindicated in the title we are concerned only with tame characters of Galois groups (although
a few of our results obviously generalize). These are the Galois Gauss sums which can be viewed
as a generalization of Gauss sums for finite fields. Our first aim is to derive their fundamental
arithmetic properties, as regards prime ideal decomposition, absolute values, Galois action and
congruence behaviour. The original motivation which first led to these, previously unknown,
arithmetic properties was the connection with Galois module structure of algebraic integers, and
indeed almost every theorem on Galois Gauss sums has its module theoretic implications. The
original point of view here was mainly global, whereas the actual results on Galois Gauss sums
are essentially local ones, properly to be studied in the local context and of independent interest
in themselves, besides their direct application to local Hermitian Galois module structure.

One aspect of our theory is the connection with certain other functions of Galois characters —
e.g. ‘norm resolvents’ and the ‘characteristic’ —to be defined. Indeed we suspect that the
formal properties found here apply, mutatis mutandis, to a much wider range of arithmetic
character functions.

Our second aim is an internal characterization of the 7(y) over a given local field K, without
reference to induction, i.e. to transition to extension fields of K. The theorem of Langlands —
Deligne essentially describes the 7() over K in terms of the 7()) restricted to Abelian y over E, E
running through all extension fields of K. The computation of the 7(x) thus requires the knowl-
edge of the structure of the £*, the multiplicative group of E, for all such E. Here we shall in
fact prove that the 7()y), for Galois characters y over K, are uniquely determined by their intrinsic
properties in terms of absolute values, ideals, congruences etc., together with the explicit formula
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for Abelian characters over K only. The interesting aspect of this lies in the treatment of the non-
Abelian characters.

We take the Abelian theory for granted, as developed in the classical paper of Davenport &
Hasse (1935). Following Stickelberger they gave an internal arithmetic description in the
Abelian case and we are doing the same in the non-Abelian one. In fact our congruence theorems
are strongly non-Abelian, and are much weaker for Abelian characters. They could of course be
supplemented by the Abelian congruence theorems in the Davenport & Hasse paper rather
than by the explicit Abelian formulae. Whatever method one adopts the local Galois Gauss sums
are uniquely described in terms of the one given field K.

In the original version of this paper we took for granted the existence of inductive Galois Gauss
sums, as established by Langlands and Deligne. We realized subsequently that our approach via
the arithmetic properties provided a new method of actually producing local Galois Gauss sums
and so local root numbers W (y) with the required inductive behaviour. This then is our third
aim. In this context our approach is different from that outlined in the preceding paragraphs.
We now consider all tame Galois characters over all tame extensions of K and extend the classical
Gauss sum to non-Abelian characters, the extended function being inductive in degree zero.
Unfortunately our proof applies only to tame characters, but as far as these are concerned it is
different from either Langlands’s or Deligne’s. In particular — compared with Deligne’s — it is
entirely local.

We assume nothing beyond general algebraic number theory, up to and including local class
field theory and the theory of Gauss sums of finite fields as presented in the Davenport & Hasse
paper. Beyond that our theory is self contained. All required definitions (i.e. conductors etc.) will
be stated, and all theorems will in principle be deduced from these. ¢ In principle’ means that we
allow ourselves references to the available literature as a guide to the reader of how to derive a
stated result from our given definitions.

In §1 we give the basic definitions and state the main theorems. §2 deals with properties of
certain auxiliary objects to be introduced. The proofs then follow in §§3-7. In §8 we give an
application to the general theory of real valued characters. It was this special case which first led
to a study of the constants (Frohlich & Queyrut 1971; Armitage 1972; and Frohlich 1974).

Tame local constants have also - in a different context — recently been studied by Macdonald
(in preparation), who has established a relation with the representations of finite general linear
groups.

Notation

The symbols N, Z, @, R, C have the usual meaning: the set of natural numbers, the ring of
integers and the fields of rational, real and complex numbers. Q is the algebraic closure of @ in C.
Z, and @, are the ring of p-adic integers and the field of p-adic numbers respectively, and Q,
is a fixed algebraic closure of Q,. For r > 0, F,- is the finite field of p" elements.

If S is a ring, S* is the multiplicative group of its invertible elements. If I'is a finite group, SI"
is the group ring of I" over . For the purposes of this paper a local field £ is a field between Q,,
and @, which is of finite degree over Q,,. The ring of integers of £ is Oy, the non-zero prime ideal
of k is p,, and the residue class field of Oy, is £(= Oy/py)-

Further notation will be introduced as it is required.

18-2
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144 A.FROHLICH AND M.J. TAYLOR

1. BASIC RESULTS AND STATEMENT OF MAIN THEOREMS

Let K be a finite extension of Q,. We consider tame continuous characters « of K* such that
(i) forsomene N, a” = ¢, the identity character of K*, (ii) the restriction of &« to O% is lifted from a
character of K*; by abuse of notation we shall also call this residue class character &. These
characters & of K* form a multiplicative group X(K).

If &|O% is trivial, then a is non-ramified, i.e. « may be viewed as a character of K* /0%, and
thus of the group of fractional ideals of © 4. In this case we define the conductor j(a) = Dg, and
the Abelian Gauss sum 7%(a) to be

() = a(Dg)~Y, (1.1.0)
where Dy is the different of K/Q,,.
If &|O% is non-trivial, then the conductor j(«) = p, and the Abelian Gauss sum 7%(a) is

T%() = %} ou(uc™) Y (uc™). (1.1.5)

Here (i) the sum extends over a set of representatives u of K* in %, (ii) c€ K is chosen such that
¢Ox = YDk, (iii) ¥x is the canonical additive character of K given by g = ¥, 0 i /0y
where g q, is the trace, and ¥, is the homomorphism of the additive group of @, into C* with
Z, < ker (¥,) and ¥, (p°) = e*™i#* for seZ. ‘

It can easily be verified that 7%°(a) is independent of the particular choice of ¢ and of choice of
representatives u.

Now let N/K be a tame (i.e. at most tamely ramified) normal extension of local fields. We con-
sider representations 7" of the Galois group I" = Gal (N/K) over C, and their associated charac-
ters y viewed as functions I"—+C, where x(y) = trace (7(y)), for all yeI'. The additive group
generated by the characters is called the group of virtual characters of I"and it will be denoted by
R(N/K). If L/K is also a tame normal extension with L > N, then lifting representations of
characters from the quotient group Gal (N/K) of Gal (L/K) to Gal (L/K) yields an embedding
R(N/K)—R(L/K), and we denote the direct limit of the R(N/K) by R(K ). We shall view R(K)
as the union of the R(N/K); its elements are the tame Galois characters over K.

In defining functions on R(K ) we have, of course, to be careful to ensure that definitions are
independent of choice of extension N. .

Ifin the above C is replaced by @, we analogously get p-adic characters y: I'-> 61,, and groups
R®(N/K), R®P(K). Alternatively we may consider directly the continuous representations 7" of
Gal (@,/K) (endowed with the Krull topology) either over C, or, over @,, (both C and @, being
viewed as discrete groups), and where ker (7') contains the “first’ or ‘wild’ ramification groups.
We then view R(K) and R®(K) as the additive groups of the corresponding virtual characters.

An Abelian character ¢ € R(K') is an actual character of degree one. We shall identify such a ¢
with the associated homomorphism Gal (@,/K) - C*. The Abelian characters form a multipli-
cative group R(K)%.

The Artin map of local class field theory yields an isomorphism

A:R(K)® 3 X(K). (1.2)

Similarly for p-adic Abelian characters the Artin map yields an isomorphism R®(K)e

XD(K).
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Now let L/K be a tame extension of local fields. Induction of characters yields homomorphisms
of additive groups
R(L) > R(K),

Indg: {R<L)°+ R(KY,

where R(K)?is the subgroup of R(K) of virtual characters of degree zero. We have similar homo-
morphisms for R®(L) and R®(L)°.

For a given local field £, let R, (resp. R{) be the union of the groups R(K) (resp. R?(K))
where K runs through the tame extensions of £ of finite degree. In the sequel, X, L, N are always
local fields which are tame over £.

THEOREM 1. There is a_function
T:R,—>C*
with the following properties:
(i) For all K[k, T: R(K) - C* is a homomorphism of groups, i.e. T(x +6) = 7(x) 7(0).

(i) If eR(K) then
7($) = 19(4g) (cf. (1.1), (1.2)).
(iii) 7 is inductive in degree zero, i.e. if L > K, ye R(L)°, then
7(Indg x) = 7(x)-
7(x) ts called the (lbcal) Galois Gauss sum of x.

As stated in the introduction, our approach is independent of previous work on non-Abelian
local constants, and therefore proofs will be given for all theorems stated in this section, in outline
at least.

Later we shall see that theorem 1 is essentially the tame case of the Langlands theorem on the
existence of local constants.

Remark. Brauer induction ensures the uniqueness of 7 (see Serre 1971, p. 96, exercise 2).

Note now that the values of Galois characters lie in @. Thus 2 = Gal (Q/Q) acts on characters
by (x°)(y) = (x(7))*, for xeR(K), yeGal(Q,/K), wef. Again by (1.1), theorem 1 and
Brauer induction we may view 7 as a function R;,—@*. In order to describe the action of 2 on 7
we need the canonical homomorphism u: Q —Z} given by the action of £ on the p-primary sub-
group p,,» of s, the group of roots of unity in Q.IfweQand meZ with t,(w)-m = 1 mod p”, then
(eznip—” © — ezuimp‘”.

Observe that if y is a Galois character corresponding to a representation T of I' = Gal (N/K),
then the map y>Det (7(y)) = det,(y) defines an Abelian character det,. The map x> det,
extends to a homomorphism of groups

 det: R(K) - R(K)®.
Now we havé (cf. Frohlich 1975, theorem 4).
THEOREM 2. For all e R,, and for all we Q, -
(37 = 7(x)- Adet, (u,(0)).

Theorem 2 will be proved in §3. :
Now let y € R(K) correspond to a representation 7:I'-GL,(C), where I' = Gal (N/K). Let
¥ be an m-dimensional C vector space which is viewed as a I~module via T. Let I = I(N/K) be
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146 A.FROHLICH AND M.]J. TAYLOR

the inertia group of I". We define the conductor of y, f(x), to be
f(x) = pgm@r-dim@d, (1.3)

The norm conductor Nj(y) is the absolute norm of the ideal {(y), i.e. the order of Ox/f(x)-
It is clear that the map y > Nf(x) extends, by Z-linearity, to a homomorphism of R(K) into the
multiplicative group of positive rationals.

THEOREM 3. (1) Forall ye R(K), |7(x)| = Nf(x)? (¢he positive square root of Nf(x)).
(i) IfEeR(K)® and if & is non-ramified (i.e. if A& is non-ramified), then for all x € R(K)

7(€x) = 7(x) T(§)IEW- AE(F(x)) .
Theorem 3 will be proved in §3.

Remark. The definition of 7%(a) and theorems 1-3 extend to the wild case. Indeed, given
theorem 1, the proofs of theorems 2 and 3 in the general case are the same as for tame characters.
If ze C, then uniquely we can write
z = |z| r(2).
We define W(x) =r(7(X)), (1.4)
where ¥ is the complex conjugate of y. Then we have

CoroLLARY. The maps x> Ni(x)3, x> W(x) are additive on R(K) and are inductive on R(K)°.

This corollary, together with the explicit formulae for Abelian characters (theorem 1 (ii)),
ensures that W(y) coincides with the Langlands constant, as described in Tate’s (1977) notes, for
Abelian characters and in degree zero, hence generally.

The next three theorems introduce some entirely new properties of the local Galois Gauss
sums. Their global analogues are closely related to the theory of global Galois module structure
(see Frohlich 1976).

We first have to introduce the notion of a local resolvent. Let T I'->GL,,(Q,) be a represen-
tation of I' = Gal (N/K) with character y. We extend 7 to an algebra map from M, (Q,, I') (the
k x k matrices with entries in @, I) to the ring M,,;,(Q,). The map g Det T(g) is a homomor-
phism GL,(Q, I') > Q} which only depends on the character x of 7" and which we denote by
Det,. This definition extends to virtual characters by Z-linearity. (Note that the restriction of
Det, to I, when £ = 1, is the p-adic analogue to the homomorphism det,: I'> C* defined earlier.)

Next we observe that, because N/K is tame, N/K has a normal integral basis, i.e. Oy is a free
O I'-module on one generator. For an outline of the proof of this fact see Noether (1934). Let a
be such a generator. For y e R?)(N/K) the element resolvent (a|x)y/x is defined by

(a|x)wix = Det, (Era%y-l). (1.5)

Let T, be the group of units in the ring of integers of @,,. The quotient group @} /T, may be
viewed as the group of p-adic fractional ideals. We shall show that the fractional ideal

P(x) = ((e|x)wix) (1.6)
is independent of the choice of both @ and N. First we observe that any other free generator 4 of

Oy over O I'is of the form a? for g€ O I™*. One verifies immediately from (1.5) that

_ (@|X)nix = (a]X)nix Dety (8),
and clearly Det, (¢g) e U,.
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Now let L > Nwith L/K tame and normal, and let ¢ be a free generator of Oy, over Ox X (where
2 = Gal (L/K)). Itis easily seen that the trace £;,y(c) is a free generator of Oy over O I'and that

(ten ()| X) vz = (€] X) 1ixs
for ye RO(N/K) < RO(L/K).

The Galois group 2, = Gal(Q,/Q,) acts both on R®(K) and also (trivially) on Q%/U,. In
particular if weGal (Q,/K) then with a and y as above one verifies that

(alx* )%z = (a|x)yiz det, (),
where det, is now interpreted p-adically. Thus

P(x*™)° = P(x)-
Let {o} be a right transversal of Gal (Q,/K) in £, Then the ‘norm’ of P(y)

Hicia, P() = TLPGr™)” = TP ™) (17)

is a well-defined p-adic fractional ideal.

Now let & be a field embedding @ ¢, @, which extends @ ¢ @,,. Then % induces isomorphisms
R(K) X Ro(K), Rk—h> RP. If yeR(K) then 7(x)"*€Q} determines a unique p-adic fractional
ideal (7(x)*). We then have

THEOREM 4. (Local resolvent—Gauss sum theorem). For all such embeddings h

, , (r(x)*) = Mg, P(X")-
Theorem 4 will be proved in §4.

Remark. This is the local analogue of the global, or rather semi-local theorem, which lies at the
foundation of the global Galois module structure theory in Frohlich (1976) (see also Frohlich’s
forthcoming book). The global result can also be deduced from our local one and this in fact is the
most satisfactory approach.

For subsequent use we have to introduce some notation for congruences in Q. Let ! be a prime
number. We denote the radical of the ideal [ in the ring of all algebraic integers by &. The con-
gruence a = bmod "¢, (r > 0) for algebraic integers @ and b means that in any number field ¥
containing a and b, for any prime ideal & of F above /, we have a congruence ¢ = bmod I" €.

Let [ again be a prime number. Let I" = Gal (N/K), and define

kerd, i = {x eR(N/K)|x(y) =0 if (order(y),]) = 1}.

In fact ker d; y/x is the kernel of ‘reduction mod [’ i.e. of the Brauer decomposition map on the
characters of I'. It is easily verified that if L > N with L/K tame and normal then kerd; y/x =
R(N/K) nkerd, ;;x. The union of the groups kerd, y/x thus forms a sub-group, kerd; say, of
R(K) and kerd;n R(N/K) = kerd y/x-

After these preparatory remarks we now define a function on Galois characters which we shall
call the non-ramified characteristic. This function has been defined previously, for quite different
reasons, by Deligne (1973, (5.1)). ’

Let ye R(K) be irreducible. We put

n(x) =x if §(x) =g
n(x) =0 if f(x) # Ox.
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By Z-linearity we extend 7 to an endomorphism of R(K), for every K. This is possible, and is
uniquely so, because the irreducible characters are free generators of the Abelian group R(K).
n(x) is the non-ramified part of y. Now we put

y(x) = (—1)%ee- Adet,y (bx). (1.8)

Here deg (n(y)) is the degree of n(), and 4 det, (P &) is well-defined as 4 det,, is non-ramified.
y(x) is called the non-ramified characteristic of ¥. ‘
Recall that y is the group of roots of unity in @ and that 2 = Gal (Q/Q).

THEOREM 5. (i) yeHomy (R(K), ) for all K, and y(x) = 1 if both det,,,, = € the identity character
and deg (n(x)) = Omod (2).
(ii) y us inductive, i.e. for all L > K and for all € R(L),

y (Indf ¢) = y(¢).

y(x) = 7(x) mod &;.
Parts (i) and (ii) of theorem 5 are proved in §2, and part (iii) is proved at the end of §6.

(iii) If yekerd, then

Remark 1. It is property (iii) which is the crucial one. Its global version, a consequence of the
local one, again has important consequences in Galois module structure (see Cassou-Nogués
1978; Frohlich 1976; and also Cassou-Nogués 1979).

Remark 2. In an earlier paper (Frohlich 1976, §11) one of us had introduced functions % on
kerd,, one for each prime /, satisfying a congruence of the type given in (iii). Subsequently
Philippe Cassou-Nogués proved as a consequence of a general result in character theory that
these y, could be ‘fitted together’. Here we have a direct proof of this result.

For the final result in this group of theorems we introduce the notion of an l-character. Let /
again be a prime number. An [-character is a (tame) Galois character which appears as a charac-
terof Gal (N/K) = I'where I'is a group of l-power order. Note thatif/ = p, then all such charac-
ters are necessarily non-ramified. We first state the result for the case when [ is odd.

THEOREM 6 (a). Let | be an odd prime number and let x be an irreducible non-Abelian l-character. Then
7(x —det,) = Adet, (deg(x))~* mod (I).

Remark 1. See Taylor’s (1977) paper (and also Frohlich, in preparation) for the consequences
in Galois module structure of this congruence.

Remark 2. Theorem 6 (a) corresponds to the local root number identity
W(x) = Adet, (deg (x)) W(det,) ‘

for y an irreducible, non-Abelian /-character (Taylor 1977).

For [ = 2 the congruences are more complicated and we have to introduce a number of
ancillary functions and discuss various types of 2-character.-

Firstletp = — 142" mod (2¥), with N > 3. Let B be the set of characters of Fj: of order 27.
Choose de F} such that d¢ F§, d2e F}.

For pe B we put
A=A(p) = ZF B(1+xd). (1.10)

Let # be a primitive 2/-th root of unity.
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ProposiTiON 1. (1) A(f) is independent of the choice of d.
(ii) For all such
A(p) = imod (2(y—1)7%),
A(f) £ imod (2)
i.e. A(p) = i(');-!—l)/(?]—-l) mod (2).

Moreover the residue class of A(f) mod 2(n— 1), and hence mod 28, is independent of B. We denote this
residue class by A,.

(iii) A(B)eQ(n—y7") and A(B) A(B) = p.

Remark. On fixing 5 = e™2" ™ we get

i(n+1)/(n—1) = cot(x/2")
and so we may choose 4, = + cot (1/2") mod 28,, with the appropriate choice of sign.

Question. Is there some other arithmetic property of p which allows us to determine A, among
the two possible choices given above, i.e. other than by congruences mod 2(y —1)?

We now wish to describe the set of prime divisors p of p in Q(5) which divide A(8). Let mr,, be a
surjection of the ring of integers of Q(#) onto F,. with kernel p. Then for some s€Z we have
Ty f(x) = x*for all x€ F}.. This then determines s uniquely up to the substitution s sp (achieved
by composing r,, with the Frobenius of p), and modulo congruences mod (% — 1). We now choose
0 <5 < p?>—1. Let S B. Clearly s is odd. If we view the {fo,} as automorphisms of (y) in the
natural way, then they are distinct. So by counting we obtain a bijection between primes p|(p)
and pairs of residue classes s, sp mod Z /27, with s odd. For such an s, p, has the obvious meaning.

Put s = 2m + 1 and write

1
I, (2"“.’ )(-1)f, (1.11)
0<j<m\ 2
p—1|j
where the (2m2}— 1) are the usual binomial coefficients.

We consider the set of orbits of (Z/2¥Z) * under multiplication by p. In the sequel let .S be a set of
representatives of these orbits, in the interval 0 < s < p>— 1. Then we have

ProrosiTioN 2. (i) (A(B)) = 15 P, where the product extends over those s € S with p| Ly. This property,

together with the congruence A(f) = A, mod 28, and the equation A() A(f) = p, determines A(B) uniquely.
(ii) Writing A(B) = a+b(n—971) with a, be Q(9*+9~2), we have

a=2"f(1+xd), b(n—n")=2"p(1+xd),
where X+, 2~ are summed over the squares, and non-squares respectively among the elements {1 + xd}.

Question. Is every algebraic integer Ae Q(7—%~1) with the property that AX =p and A = 4,
mod 28, of the form A = A(f)?
We have tointroduce a further symbol. For each N > 2andforallmeZ withm = + 1 mod (2V),

we define a symbol vy by
1 if m= +1mod (2N+1),

W =i o= 414 2V mod (2341),

vy is thus a restricted residue class character.

19 Vol. 208. A
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Now we return to the general situation considered earlier, with I" = Gal (N/K) a 2-group. Le
I be the inertia sub-group of I'. We shall assume I" to be non-Abelian. We will say that I" acts by
inversion on I, if for some 7: I'->{ + 1) we have

4)/—10'7 = g™
for all yeI' and for all cel.

If x is an irreducible non-Abelian 2-character in R(K ), then we say that y is of inversion type if ¥
is in some R(N/K) where I" = Gal (N/K) acts by inversion. Also, if y is of inversion type then
deg (x) = 2, and if y is faithful on I" then Npr = —1mod (2V) where 2V is the order of the
inertia group.

THEOREM 6 (). Let ¥ be an irreducible, non-Abelian 2-character in R(K).
(1) If x is of inversion type, then

7(x) = 7(det,) vy(Npg) A det, (Px) 7 mod 28,.
(ii) If x is not of inversion type and Np g = 1 mod (4), then

2 (ﬁ: IFp)
7(x) = —7 (det,) (:5) Adet, (deg (x))~* mod 28,.

(iii) If x is not of inversion type and Np g = —1mod (4), then
7(x) = —7 (det,) AFF» Adet, (deg (x)) " mod 28,.

Theorem 6, parts (a) and (b), will be proved in §5.

Finally we give an internal characterization of the homomorphism 7: R(k) - @*, in terms of the
properties stated in theorems 2-6 without reference to Galois Gauss sums in extension fields of £,
i.e. without reduction to the Abelian case via Brauer induction. The aim is to characterize 7 over
k purely by arithmetic properties. Indeed one can see fairly easily that the properties of theorems
2—-4 already determine 7 uniquely modulo a homomorphism R(£) —u commuting with £2-action.
The main object of study is the sub-group of R(%) generated by the irreducible non-Abelian
characters, or some other suitable complement in R(£) of the additive sub-group generated by
R(k)®. Indeed, although some of our characterizations do extend to R(£)%, the results are much
stronger in the non-Abelian case, and anyway, the job for Abelian characters had already been
done (Davenport & Hasse 1935, §4). Accordingly we shall allow here the explicit formulae (1.1)
for Abelian characters as part of our description.

Let S(k) be the kernel of det: R(k) - R(k)®,i.e. S(k) is the sub-group of virtual characters y with
det, = e. Clearly S(£), together with R(k)%, generates R(f).

THEOREM 7. The homomorphism 7: R(k) —Q* is the unique homomorphism such that

(i) for e R(K)®, 7($) = 7%(8);
(i) the various equations of theorems 2, 3, 4, 5 (iii) and 6, all hold when their domains of definition are
restricted to S(k).

Remark 1. Theorem 7 remains true if we replace S(£) by the smaller subgroup,
ker (det) n ker (deg),

of virtual characters with determinant ¢ and degree zero. (The point being that this subgroup
is inductive.)
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Remark 2. It also suffices to restrict requirement (i) to the values of 7(¢), where ¢ runs through
the Abelian /-characters for all primes /, and, in (ii), we require theorem 3 (ii) only for Abelian
non-ramified /-characters for all primes /.

2. PROPERTIES OF CONDUCTORS, RESOLVENTS AND CHARACTERISTICS

In §3 weshall give a definition of 7 in terms of Abelian characters and a canonical non-ramified
induction theorem, for irreducible characters. In order to prove theorems 2, 4 and 5 we must first
establish certain basic properties for the functions mentioned in the title of this section.

2(a). Let L > K. For the identity character e, of Gal (@, /L), we have f(ez) = 1. If ye R(L)

then
f(Indk x) = Npx f(x) D(L/K)E .

(Here Ny is the relative norm and b(L/K) is the relative discriminant.) ’
The proof of 2 () follows immediately from the definition (1.3) of (), and from the standard

formula
b(L/K) = p]}e_l)’

where fand ¢ are the residue class degree, and the ramification index, respectively.

2(b). If e R(K)®, then {(8) = {(44).

(This is part of local class field theory.)

In preparation for subsequent use we shall introduce some further notation and recall various
results from local class field theory. Let L/K be an extension of local fields, and let N be a normal
extension of K which contains L. We put

I'=Gal (N/K), A =Gal(N/L). (2.1)

We denote by prx the signature of the permutation representation of I" on the cosets I'/4.
Clearly this only depends on L and K. Itis an Abelian character of order 1 or 2, and explicitly

Prx = det,, € = Indge;.

Next we denote by V7% the co-transfer map V- R%(L) - R*(K). From local class field theory
we know that the diagram

A
R (K) > X(K)
A 1\
Vl/l( (2.2)
A
R (L) » X(L)

19-2
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commutes, where the right hand column is induced by the inclusion map K* ¢, L*. Similarly we
have a further commutative diagram '

A
R% (K) » X(K)
Res Nk (23)
Y Y
A
R (L) > X(L)

where the left hand column is character restriction and the right hand column is the co-norm
(induced by Npjg: L* - K*).

We now consider the non-ramified characteristic defined in §1.

Theorem 5 (i) is obvious.

Proof of theorem 5 (ii). We keep the notation of (2.1), and we use the following description of
n(x) (the non-ramified part of ¥). Let V be a I-module with character y and let I be the inertia
sub-group of I". Then n(y) is the character of the I"sub-module of elements of V fixed by I, V'Zsay.

For the proof of theorem 5 (ii) we may assume y to be an irreducible character of 4. In view of
the solubility of local Galois groups, by transitivity of induction we may assume that[L: K] =/, a
prime number.

First if n(yx) = 0, then (¥|;n4, €104) = 0, and so by Mackey’s restriction formula (Serre 1971,
7.1) (Indf x|;, €;) = 0 hence zn (Indf y) = 0, thus

y(x) =1 =y (Indfy).

Now we assume z()y) = x, so that, as y is irreducible, y must be Abelian.
Suppose, first, that L/K is totally ramified. By Mackey’s restriction formula

(Indf |1, &) = (Indj™ ¥| 104, €)

= (Indgnd €rnas eI) = 1'

Thus n(Indf y) = ¢, an Abelian character which extends y (by Frobenius reciprocity). As
Nyx 91, = bx, by the commutativity of (2.3), A¢(px) = Ax(p.). Because deg (¢) = 1 = deg(y),
we have now shown that y(x) = y(Indf y).

Next we take L/K to be non-ramified. Then n(Indfy) =Ind2y (= yssay), and
det, = Prix Vix X- As L/K is non-ramified, by the commutativity of (2.2),

4 det, (bx) = Aprix(9x)-Ax(0L),
whence y(Xs) = Ax(0z) [Apix (Px) (— 1)1].

If | = 2, Apyx is quadratic and non-ramified, and hence takes the value —1 on pg; while if
[ # 2 then py i = €x.
In both cases the expression in brackets takes the value — 1, and this completes the proof.
Next, we consider resolvents. Global analogues to the results we state here are proved in §§4,
5 and 6 of Frohlich (1976).
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2 (¢). With the notation introduced in § 1, preceding theorem 4, for y € R®)(L)

Hia, PNk x) = N1ja, P(1) Nxia, b(L/K)HHE.

P
(To justify the exponent % deg () recall that we are working in the group of all fractional ideals,
i.e. Q}/U,, and this group is divisible.)

2(d). Let ye RP(N/K), let N> L = K with L/K unramified and let y’ be the restriction of ¥
to Gal (N/L). Then P(y) = P(x').

As an immediate corollary to 2 (d) we have:

2(e). Let x, peR®(N/K). If their restrictions to the inertia subgroup coincide, then
P(x) = P(¢).

2(f). Let g€ R®(K) be an Abelian character of order prime to p. Suppose that for all u € D%
AP(u) = u=¥Px VS mod P

with 0 < s < 1, se[1/(Npg —1)] Z. Such an s exists as the order of the restriction of 4¢ to D%
divides Npx — 1, hence K* contains the values of A¢ on Ok, and so the map > A¢p(u) defines an
endomorphism of (Dx/Px)*. Clearly s is unique. Then our result is that

P(¢) = px
and we recall that in our language a power of px by a rational exponent makes sense.
Proof of 2(c). Let I' = Gal (N/K), 4 = Gal (L/K). We shall show the identity
(a|Indk ) = ];I (b|x"")7-d(L/K)tes® mod U, (2.4)

where a (resp. b) is a free generator of Oy over O I' (resp. O, 4) and where {7} is a right trans-
versal of 4 in I'. (Applying Axq, then yields 2(c).)

Let ¢ = (I":4) and let {¢;}{_; be a basis of O, over Og. Let {w,} be a basis of O over Ox 4
(such a basis exists because Dy is Ox I'free!). Suppose that T: 4 > GL,(Q,) is a representation of
A with character x. As in §1 we extend to an algebra homomorphism T: M,(Q, 4) - M,,,(Q,).

We denote by w the element of A,(Q,, 4) whose (o,?) entry is

> wivs-1,

ded

Suppose now that we consider a second basis {w;} of Oy over Ox 4, giving rise to a matrix w’'.
Clearly w; = X;w; Az, where (A;;) € GL,(Ox 4), and one checks then that

Det,(w") = Det,(w) Det,(A;;), (2.5)
ie. Det,(w') = Det,(w) mod U,.
We now make the first of two special choices of {w;}. We put w; = ¢; 5. Then we have
Z‘wgaa—l — ch'b&aa——l

and so w = diag (Zb%7871) ) (¢]) i, 00-
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Taking the image under 7, and taking determinants, we get
Dety(w) = A7k (b|x) det (c7) 9= .
So because det (¢)20x = d(L/K), we see that as fractional ideals
Det, (1) = A3c(b]) b(L/K)¥ex .
We now make a second choice of {w;}. Namely we set {w;} = {a” ~*}. Then w becomes

(% al~e 8_.1) (o, 6)°

So now by (2.5) it is enough to show that there is a representation 7y : I"— Gan(ﬁp) with charac-
ter Ind% y, such that Ty (Za?y—!) = T (w) (for then det ({a® *}) = (a|Ind% y) as required).

We may view @, Q, as a 4 module via 7. We then view @,®,Q, o as a I'module in the
obvious way. (This module then has character Ind% y.) Thus it is enough to note that

o2aryl = Xaroy—1
=Y Xa 610,
05
" Proof of 2 (d). With the same notation as above we are required to prove
(alx) = (b]].) mod T, (2.6)

Consider the ring of 4 maps from I" to Oy, Map,(I', Oy). This is a I-module by stipulating

that g7(y’) = g(yy'), for ge Map,(I',Dy), 7, v'eT.
The algebra Oy ® o, Oy, is an Oy, I-module, where I" acts on the first factor and O, on the
second. We have a homomorphism of rings and I-modules

7: Oy ® Oz —>Map, (I, Oy)
given by #(Zx ® y) (y) = Zx7y. We see that 7 is given by restricting the algebra isomorphism
N ®x L = Map,(I', N).

Thus in the first place 7 is injective. Moreover, L/K being non-ramified, Oy ® O, is a maximal
order. Thus, its image under 7 is a maximal order contained in the order Map,(I', O). In other
words 7 is surjective and so is an isomorphism.

We now make Map, (I, Oy) into an ;-module via % (through multiplication on the second
factor of Oy ® Oy). This preserves the I'-structure of Map, ([, Oy), so that it is now an O, I-
module.

We have our injection of O, I~modules §: Map, (I, Oy) o Oy I'given by £(g) = Zg(y) v~L

Consider f, € Map, (I, Oy) defined by

if ,
s ={y 4 15

0 if yed.

Then f, is seen to be a free generator of Map, (I, Oy) over O I". Thus for some Ae Oy I'*, as

7(a ® 1) is also a free generator,
7(a® 1)"‘ = Jo»

so taking images under £ (X ay ) A= X b6
ded

yell

(2.6) now follows on applying Det, to both sides, since Det,(A) € U,,.
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Proof of 2 (d). The proof falls into two parts. We first assume that K contains the values of ¢ and
establish the result under this hypothesis. Then we reduce from the general case to this special
case.

So suppose K contains all the ath roots of unity, where ¢ is of order z. Thus ¢ is faithful of
order non Gal (N/K) for some Kummer extension N of K, and the elements x € K with x? = x¢(y)
for all y € Gal (N/K) form a one-dimensional K-subspace N, of N. By linearity, extend the surjec-
tive homomorphism v: K* —>Z given by valuation to a homomorphism »: N* —Q, which is
trivial on 0}. It is clear that the values of von N* n Ny = Nj form a cosetin @ mod Z. Let s be the
least non-negative one of these values (so that 0 < s < 1). Observe then that the Qx-module
Oy N Ny is free of rank one, and an element x € N is a generator precisely when o(x) = s.

Now let a be a free generator of Oy over O Gal (N/K). Then indeed (a|y) is a free generator of
On N Ny over O. Hence v(aly) = s, i.e.

P($) = pk- (2.7)

We now have to show that s satisfies the given congruence conditions. For this we have to use
the properties of the local norm residue symbol. In the sequel we denote the Artin map onto
Galois groups of Abelian extensions by 4. Let u be a unit of O and let x be a generator of Ny n Oy
Then »* = 7w, where 7 is a given element of K with 70 = px and w a unit. This implies that
r = ns. Writing %u = y, we have

AB(u) = xrg1 = (-’%1‘-) (definition of (—),)

= (71_;)14)1' (multiplicativity and (%E)n = 1)

n

= (giaj): (skew-symmetry)
= (y4my-1)-r (definition)

=y W Dmodpr (as A(n) is a Frobenius)
= u W Dmodpx (asr = ns).

This then establishes the result in the Kummer case.
In the general case let L = K(¢) be the field obtained from K by adjoining the values of ¢, and

suppose that
APp(u) = w PP~ modpx

for all ue D%, with 0 < s < 1. Trivially L contains the values of Res ¢, the restriction of ¢ to
Galois groups over L. But by the commutativity of (2.3)

ARes §(u) = Ap(Ny/x u)
for ue L*, and as L/K is non-ramified
Nyg (1) = uN9-DN%~Dmodp ;.
Therefore ARes¢(u) = u~V¥~Dsmod ;.
So that, as we are now in the Kummer case,

P(Resg) = p3.
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Again as L/K is non-ramified we have in the first place that p;, = g, and in the second place, by
2(d), that P(¢) = P(Res¢). Thus indeed

P(¢) = k-

3. DEFINITION OF 7 AND IMMEDIATE CONSEQUENCES

Throughout this section we consider a fixed tame, normal extension N/K with Galois group I"
and with inertia group I. Thus I"/I and I are both cyclic.

3(a). (i) One knows (for instance by an easy generalization of 8.2 in Serre (1971)) that if y is an
irreducible character of I', then there exists a subgroup 2 of I', X' = I, and an Abelian character
¢ of X' such that y is induced from ¢, i.e. y = Indf ¢. y determines 2" uniquely and determines ¢
uniquely to within the substitution ¢ ¢, for y € I', where 7¢(8) = ¢(y~1dy).

(ii) By Mackey’s irreducibility criterion (Serre 1971, 7.4), if 4 is a normal subgroup of I" and if
¢ is an Abelian character of 4, then Ind{ ¢ is irreducible if, and only if, 71¢ = Y2¢) implies y, = 7y,
mod 4, for y, eI (i.e. if, and only if, 4 is the stabilizer of ¢).

With y a given irreducible character of I, we let L = N® be the fixed field of the sub-group &
associated to y by 3 (a) (i); so that y = Ind%(¢), € R®(N/L). We now define

7(x) = T (x) = 7(49) Aprix (Dxc)- (3.1)

Note that p;x = pz)x, since it has order two. Here py ;e = detey, €, = Indf ¢;. (Note that
as 2 o I, L/K is non-ramified and hence p; % is non-ramified.) We have, of course, to verify first
that 792(A¢) = 7%(A7¢). This is immediate because 47¢(x) = A@(x?) for xe L*, while on the
other hand the additive character ¢ is I-invariant, i.e. {7 (x?) = ¥ (x). (Now use the definition
of 7% givenin (1.1).) Secondly we have to verify thatif N’ > N with N'/K tame and normal, then
indeed 7y,x (%) = Taix(x). This is obvious.

We now extend the definition of 7 to all of R(N/K) by additivity; so that for y, /e R(N/K)

T(x +0) = 7(x)-7(0). (3.2)

Our logical procedure is then as follows. We prove theorems 2—4 (in §§3 and 4) directly from
our definitions. We also establish part of the inductivity of 7 (parts (i) and (ii) of theorem 1 already
being obvious from our definitions). We use this to derive a weak version of theorem 5 (iii), the
remainder of theorem 5 having been already established in §2. In § 5 we prove theorem 6. Then
in §6 we complete the proofs of inductivity for 7 and of theorem 5. Finally, §7 contains the proof
of theorem 7 (the uniqueness theorem).

We now describe certain results for Abelian Gauss sums which were established by Davenport
& Hasse (1935). We shall then interpret these results in terms of 792,

Let K be a local field, and let ¢# be the canonical additive character of the residue class field
K given by

Y (x) = exp{2mitrg(x)/p}.
Let we X(K). As remarked previously « defines a character of K* which we also denote by «.

We put
— 3 o(x)Yg(r) ifaisramified,
Ga) = zeK* . (3.3)

if & is non-ramified.
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Let F/K be an extension of finite fields. Then .o Nz defines a character of /*. From (0.8) of
Davenport & Hasse (1935) we have

G(eoNpz) = G(o) &1, (3.4)

Let S also be an Abelian character of K *, with order m. Then from (0.9;) of Davenport &
Hasse

11 6@p) = Gem 6. (35)

We now interpret G and (3.4) and (3.5) in terms of 7%, Let M be the maximal non-ramified
extension of Q,, contained in K. Let « € X(K) be ramified. By (1.1)

790(0) = Za(ue) e uc),

where # is summed through a set of representatives of O} modp,,. Thus Yg(uc?) =

Yy (U trga(c™?)), and because
trgim (DEPE) = Datpat = p7'On

we can, without loss of generality, assume trg,(¢™) = p~1.
So now we have shown that for ramified & € X(KX)

7%(0t) = —a(c™?) G(é), . | (3.6)

where ¢ is chosen such that both ¢Qyx = pxr Dx and trg,(c7t) = p~L
Now let L/K be an non-ramified extension of local fields. Let ¢ be as in (3.6); then
¢D1, = Px Dx Oy, = Pz, Dr. So, for ramified & € X(K), as for (3.6) we have

7%®(00Nyx) = —a20Npg(c™) Gleo Nyx) by (3.4)
- — (@c) 6(a)@
sothat 7900 Nyje) = 79 (o) T K- (— 1), (3.7)

Let fe X(K) have order m, and assume that in fact £ has order m on K*. Let «eX(K) and
assume that a™ is ramified. Then for each integer ¢

r0(af) = ~afi(c) Gp)
s0 by (3.5) iijl 79 Bi) = ﬁ —afi(c-1) G(afi)

i—1

= am(m=t) (™) G(om) I (= G(BY) Bi(c™))-

?

But /3’ ié"genui'nely ramified for all suchi except i = m when G(f™) = 1 = 79(#m), and so we have
T ) = am(m) 722(e) T 7(6Y) (38)
=1 i=1

Proof of theorem 3 (i). Throughout y and ¢ are as in (3.1). It will clearly suffice to establish the
theorem for irreducible such y, as both |7(y)| and Nj(x)? are additive in y. The proof that for
aeX(L) ' N

|79(@)| = |G(e)| = Nf(o)?

is classical and will not be repeated (see (0.4) in Davenport & Hasse).
Now use 2 (a) and 2 (5) to deduce that Nf(x)} = Nf(4¢$)? (note thatd(L/K) = D).

20 Vol. 2g8. A
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158 A.FROHLICH AND M. J. TAYLOR

Proof of theorem 3 (ii). Again by additivity in y, we assume that y is an irreducible character.
Now x = IndZ(¢). So by Frobenius reciprocity £y = Indf(¢£|5) and £y is irreducible. From

(3.1)
7(x) = 7(49) 4ppx(Dx);
7(€x) = 1(A($E|z)) 4prix (D).
It follows immediately from (1.1) that
0810 = (T o] s 02) vt
But by the commutativity of (2.3) €|, = (4£) o Ny. Thus
T9(AE|y) = E(Dy) B = 7o)

and if ¢ is ramified AE|5(pr) = £(pe) B = £(F(x)).
Theorem 3 (ii) is now shown.

Proof of theorem 2. One shows first that for xe L, we 2, we have ¥y (%) = ¢y (x-u, 0™2). It
follows that, for ¢ € X(L) and ramified, by (1.1)

7o) = Soufuc) i (urc=Heup 071,
= a(u, w) Za(uclou, 01) Yp(uetu, 0l),

- = ou(u, ) T(x).
While if « is non-ramified ~ :

79 ()0 = a(Dg) ! = 7% (a) = 7%(a) o, w).

By additivity it is enough to prove theorem 2 for irreducible y = Ind%¢. Because
(4g)e™" = A(¢*™"), from (8.1) (by observing that px takes values in + 1)

(¥ 7)Y = 19%(44° ) p 1k (Dk)
= 79(A¢)- Ap(u, w) pr;x(Dg) by the above
=17(x) Ad(u, ).
Now det, = Vi x ¢ prix, thus
(Adet,) (uy0) = (AVyx @) (4p ©) prix (Up @)-

But by (2.2) (AVyx ) (upw) = Ap(u,w), and pye(u,w) =1 because pyx is non-ramified.
Hence the result.

3(b). If Fis a non-ramified extension of K, and y e R(F), then:
7 (Indk X) = 4ppix(Dg) 8 ®-7(x).
In particular 7 is inductive for non-ramified extensions and degree zero virtual characters.

Proof. Without loss of generality we may assume that < N, F = N with 4 = 1. For any
G o F we have the formula

Appix (D)8 WG T Apg p(Dy) 18X = Ap g (D) 38 X
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This is a special case of the formula for the determinant of an induced character, which gives
Paix = P'9iEVpgr. So by transitivity of induction we may suppose that [K: F] =/, a prime
number. Also, by additivity, we suppose that y is an irreducible character of 4. We have

x = Indf g, (3.9)

where E = N°, 1< Q < Aand p€R®(N/E). We put £ = IndZ ¢, and we let X be the stabilizer
ofpinrl,ie. 2 ={yel|r¢ = ¢}. Let L = N*. Clearly Zn 4 = Q.

Case 1. 2 = Q. Then by 3 (a) £ is irreducible, and so, by our definition of 7, we must show that
7(4¢) Aprix(Dx) = Appix(Dx) ™ - Apr p(Dy) T%0(A9).
Note that Dp = Dg Op. The above equation then follows from (2.2) and the identity
Vo Pz PR = prix (3.10)
which is a special case of the equation for the determinant of an induced character.

Case 2.2 +# Q (i.e. AX = I'). We have the following diagrams of fields and their Galois groups:

N 1
E\ 2=In4d

L \E
F 4

In view of the definition of Z, and the fact that (E:L) = [, the Abelian character ¢ of 2 has [
distinct extensions {¢;}i—; to 2. If {6;} are the distinct Abelian characters of /2 inflated to Z,
then we can write ¢; = ¢, 6,. We have

Ind2 ¢ = i:i‘,l P (3.11)
Moreover X'is the stabilizer of each ¢, in I', so that by 3 (a) the Ind% ¢, are all irreducible. So
§=Indkx = ié Indf ¢;
and hence 7(8) = Aprx(Dg) IiI 79%(46;).

Using (3.10) and its analogue for the tower of fields E > F o K, we see that we have to prove the
equation 7(9) = TL7*(46,0,): Apgiz (D). (3.12)

.
If ¢ is non-ramified then 7(¢) = AP(Dg)~' = AVyx $(Dg)~? (by (2.2)) and so

I17(4¢,6;) = T1 A, 0,(Dp)~* = dety (Dy)~,
where ¢, = Ind% ¢. Hence (3.12) follows by the formula for the determinant of an induced

character.
20-2
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If ¢ is ramified, then because the 6; are non-ramified, by theorem 3 (ii),

7%(A¢, 0;) = T°(Ady) A0 (py, D)™

Now Ind% ¢ = X, 0,; so by taking determinants, IT, 6, = pg;. The right hand sidein (3.12) is now

7%(A¢1)'Apgr (1), and of course Apgy,(br) = (—1)HL
On the other hand, ¢,|, = ¢; so by the commutativity of (2.3), A¢ = A¢,0 Ny;. Hence, we

are required to show
79(Ap0 Nyyy) = (— 1)1HE:Lizab( g YE: D),

which is a particular case of the identity (3.7).

We denote by H,(N/K) the subgroup of R(N/K ) which is generated by virtual characters of I’
of the form Indf(¢,—¢@,) where 2> 1 and ¢,, ¢, are Abelian with ¢, —¢,ekerd,. Clearly
H\(N/K) < ker d;. We shall now derive a weak form of theorem 5 (iii), namely

3(c). If ye H,(N/K), then
7(x) = y(x) mod &,

Proof. One sees easily that H,(N/K) is in fact generated by virtual characters Indf (¢ —¢’),
where ¢, ¢’ are Abelian, where ¢’ has order prime to / and ¢—1¢’ has [-power order. By theorem 5
(if) and 3(b), it suffices to prove 3(c) under hypothesis that X' = I, i.e. that y = ¢ — ¢’ (with
@, ¢’ as above).

Note that always A¢(x) = A¢’(x) mod &,. If first ¢’, and hence ¢, is genuinely ramified, then

it follows immediately that
7(¢) =7(¢")mod &y, y(¢-9¢) =1

Ifl # p, then 7(p) and 7(¢’) are units at &, and hence 7(¢ — ¢’) = 1 mod &. On the other hand, if
p =1 then ¢—1¢’ is non-ramified, hence 7(¢) = A¢~1¢'(Dgpx) 7(¢’), and so again we have
7(¢—¢") =1 =y(¢—-¢').

Next if both ¢ and ¢’ are non-ramified, then
7(¢p—¢') = Ap(Dx) A¢'(Dg) = 1 mod &,
while y(p—¢') = Ap(px) 4¢'(px) ™! = 1 mod ;.

Finally, if ¢’ is non-ramified, but ¢ genuinely ramified, then writing 4¢ =a, A¢’ = o/,
a = a'a” (so that «” has l-power order) we get

7(9) = a(c) 12" (u) Y (c7u)
= ' (6)ZYr (') mod &,

= —a'(c7!) = —4¢'(bx)'7(¢") mod &
=y(¢p—¢') 7(¢') mod .

Here we have used the fact that x> /& (¢~1¥) is a non-trivial character on the additive group
Ox/Px; whence

0 = Y(e1-0) + Zfre(c) = 1+ Dy ().
Now we observe that in this situation we must have [ # p, so that T(¢) and 7'(¢') are units at &,

and it follows then that
T(p—¢') = y(¢p—¢') mod .
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4. PROOF OF THEOREM 4

To begin with the notation is the same as that of § 3. Let s be an embedding of @ in @,,. Because

both A q, P(x") and (7(x)") are additive in y, we may assume that y is irreducible where, asin
3(a), x = InngzS, ¢peR®(N/L),L = N*,Ic Z.

By (3.1) (r(0)") = (7(¢)"), and by 2(¢) Nxia,(P(X")) = Npsa,(P(¢")). We may thus assume
that y = ¢ R®(N/K).

Now write ¢ = ¢, @,, where ¢, has order prime to p and ¢, has p-power order. Because N/K is
tame, ¢, must be non-ramified. Hence by theorem 3 (ii) (7(¢; ¢5)*) = (7(¢,)*). On the other
hand, by 2 (¢), #xia, P($1 $2) = Nxia, P(¢1). We may now assume that ¢ = ¢, is of order prime
to p.

To evaluate ./iG{,Q P(¢"), let M be the max1mal non-ramified extension of @, in K, and let {0’}
be a right transvcrsal of Gal ( @p /K) in Gal (Q,/M). This extends to a right transversal {cw=/}
in Gal (Q,/Q,), where w acts as the Frobemus on M, and wherej = 0, ...,m—1 with Np, = p™.

Let £ be the restriction of A¢* to D%. The values of # lie in M, and 0 fuio™t = pol — Bl
Therefore ¢t»/~* differs from ¢"*/ by a non-ramified character. Hence from 2 (¢), and using the
fact that fractional ideals are fixed under Gal (@,,/Q,), we deduce that

p(¢hwﬂ'a—1)w-f — P(¢hpi). (4.1)

Ifnow 0 < s < 1, and
B(u) = u=@"-Dmod

then applying 2(f) to a?’, we get
P(grel) = p®, 0 < {p's} <1, {pis} =plsmodZ. (4.2)
Now [K: M] = ¢, where p% = (p). Thus by (4.1), (4.2),

m=1 i m=1¢ i
Hiia, P(¢") = TL P(¢") = pi=t 9 = ($)%,

where X stands for Z7o ¢t {p's}.
By the Stickelberger formula for (7(¢)") (see Coates 1977, theorem 3.6 and lemma 3.7) this
coincides with (7(¢$)?).

5. [-CHARACGTERS

Throughout this section / is a prime number. Indeed, because all p-characters are necessarily
non-ramified, we shall without loss of generality assume / # p.

5(a). Let E > F > F, be local fields where E/F; is cyclic and tame of degree I for / # 2 (resp.
of degree 4 when [ = 2), and where [E: F] = L.
Letae X(E) have [-power order and let &| z+ be genuinely ramified. Then

a(l)- {mod ) if 1+#2,

) = 10l p) mod2Q, if [=2
2 — 3

We shall need

LemMA 1. Let L/ M be a tame extension of local fields. Then 7 Dy, = 93, Dy Oy
(This is easily checked.) :
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Proof of 5(a). The group Gal (E/F,), = {y) say, acts in the natural way on the dual of £*.
In particular, when we view « as a residue class character of E*,

S
Yo = o+t s

where a = 0 or (a,0) =1, where r = 1, s > 1 for [ odd, and where, if/ = 2, r = +1 with s > 2
when a # 0.
Thus ifxe{)%, then z a(x(?) = Z 8&(.%) — za(x)(,_,_ay)k
dely) d k

fork=1,2,..,0ifl #£2,k=1,23,4if [ = 2.
It is now an easy matter of verification that

> a(x?) =0 {

mod () [# 2,} (5.1)
3¢ '

For example, if [ is odd, then either a(x’) = a(x) for all 8, or, a(x) # a(x?) = a(x)*+%, with
(a,0) = 1. In the first case the sum is just lx(x). In the second case we must have a(x)*** = 1 as
Ya(x) = a(x), and then we just get a(x) times the sum of all /th roots of unity, and this is zero. An
analogous result holds for / = 2, where, however, more cases can occur.

From (1.1) we have 79(0) = Za(uc) Yrg(uc),

where by lemma 1 we may choose ¢ € F§. Thus if the image of z in £ does not lie in £, then for all
8ely), Yg(udc) = Yrz(uc?) and the classes of #® in E are distinct. So we see that the sum for

7%(et) contains a term %oc (@) Yrg () = ce(cY) Pry(c) Z‘,“ @),

which by (5.1) satisfies the required congruences. Therefore

@) = X a(uc) Yp(luc)

ueOpmodp,
= d(l) —lTab(aIFo) .

From now on we shall use the notation of §3, and where we now, moreover, assume I" =
Gal(N/K) to have order a power of /. Throughout y is an irreducible non-Abelian character of I"
induced by an Abelian character ¢ of a sub-group X' containing I. We put L = N¥ and a = 4¢.
Moreover, in the case [ = 2 we let F be the non-ramified quadratic extension of X, so that F < L.
We shall also assume that «|; is faithful. o denotes a generator of I and w a generator of I"
modulo I, thus, without loss of generality, a Frobenius element.

We write IN — order (0), 1™ = order (&) mod %,
wlow = o™+, } (5-2)
ie. order (ac|o‘;) =, } (5.24)
vg(x) = a(x)"t® for xeDi.
If [ is odd, then here we have

r=1, (al)=1, t=1, t+m=N, (5.3)

while if / = 2, then we have either
w acts by tnversion, i.e.a =0, r=—1, m=1, N> 2, (5.34)
or r=+1, (a,2)=1, t>2, t+m=N. (5.3b)
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Further, as w—low = o¥Px, we get '
Npg = r+alt mod (V). (5.4)
One now verifies, e.g. by computing the transfer of o from I" to X, that
ltifeither [ # 2,or,l =2andr =1,
order (&|py) = order (Vg @|;) = {2ifl = 2,7 = — 1, w does not act by inversion> ¢ (5.5)
1 if w acts by inversion. o

Similarly one shows thatif ¥ < Q < I, [2:2] = [, if M = N®, and further ifin the case / = 2 we

also have M = F, then ,
order (a|os,) = order (Vypr ¢|7) = V2. (5.6)

As the order of w mod Q2 is /-1, all the assertions (5.2)—(5.5) on ¢ apply equally to V75, ¢ with the
same r, a and ¢t and with N and m replaced by N—1 and m— 1. Note that if / = 2 and w acts by
inversion no such field M exists.

5(b) (i). If Iis odd, then
79 () = 79%(at|x) & (deg (¥)) *mod (7).
(ii) If!{ = 2 and w does not act by inversion, then
7%() = 7% (| po) (3 deg (x)) ! mod 28,.

Proof. By repeated applications of 5 (), using (5.5) and (5.6).

For odd ! theorem 6 (@) now follows immediately. By (3.1) 7(x) = 7%(«), and a|gs = AV ¢ =
A det,. So from now on we shall assume / = 2.

Now let f€ X(F) have 2-power order. We let F = K(d) with d?e K * de D% Then, by lemma
1, we can choose c€ K* with ¢Qp = pp Dy = P Dx Op. We have -

r(B) = B [(SA0) ¥xl20e7) S A1 -+bD)+A() S A@),

where b (resp. a) runs through a complete set of representatives of K (resp. K*).
If first fBlog is trivial then Z, ﬂ(a) Npgp—1, Z,f(a) ¥x(2ac™) = —1, and, because d,
{1+ bd}, represent each coset of F* /K* exactly once, we have

341 +bd) = - p(d). 3
Thus (8) = Blre(Di ) N D). I ()
In the remaining case when f|os is non-trivial, %, 4(4) = 0, and
B 3 (@) Ye(2aT) = B (Bl
Hence L ) =B AN, (69)

We shall first complete the proof of the part of theorem 6 (b) dealing with action by inversion. Now
let B = a be as given. By (5.5) a|z+ is non-ramified, and it is clear that Apgz is non-ramified. So
since Adet, = Appx AVpix ¢ = Appixc |z+, we deduce that 4 det, is non-ramified, so we have

7(x) = 7%(2) Aprix (DK) s
7(det,) = &|x+(Dx) 4prx(Dx)-
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Hence 7(x) = 7(det,) a|g+(Dg) 7(B)

= 7(det,) &| g+ (Px) " Nipge*(d) by (5.7).
Now we know that a|ge(pr)t =4 det, (x) 2 4pmx (Px) ' ’ ‘

. = —Adet,(pg) ™
and byi_ (5.4), Npx = 1mod (4). Therefore
7(x) = 7(det,) 4 det, (bx) *a(d) mod (4). (5.9)
Now d satisfies a congruence d = WPtV mod ‘
fors = 1, butnotfors = 0. If the_n the order of | 3 is 2%, as assumed, we have
a(d) = (—1)@petoet
ie. a(d) = vy(Npk),

vy having been defined in § 1 preceding the statement of theorem 6 (4). This, in conjunction with
(5.9), completes the proof of this part of the theorem.

Now we consider the case when » does not act by inversion. As always; y is the irreducible
character induced by ¢, and & = 4¢. We shall show that mod 28,

790(0) =  (deg (1)) 17 (| o) (Nix) if Npg=1imod(4),  (5.10a)

7%(2) = a (deg (x) 1 1(a|xcs) AT i Npg = —1mod (4), (5.108)

where A is the residue class defined in proposition 1. Now 4det, = ApL,K | g+, SO by (5.5)
det, is ramlﬁed and
T(detx) = 7%(ct| gv) Ap i (D) AP Px)
‘ » = —1%a|gs) dppx (Dg)s
while by (3.1) 7(x) = 79(@) Ap 1 (Dx)-

This, in conjunction with (5.10), yields the result of theorem 6 (4). (We must also take into account

the fact that 4 det, (deg(y)) = a(deg (x)), because, as Apy - is non-ramified, Apx (deg (x)) =1).
Now by 5(5) (ii) and repeated applications of (5.6) we see moreover that (5.10) follows from

the special case m = 1, L = F. So from now on we again assume that L = F. ‘
First we consider the sub-case where Npx = 1mod (4). We shall show

190(a) = (2)1 ( Ni ) 740(a| gv) mod 28, (5.11)

Indeed, by (5.35), order(a)} 2“r1 and by (5.4), NpK = 1+2t mod (2¢+1), For any beDK
(1 = bd) = &((1+bd)°) = (1 +bd)¥x,
| S a(1+5d) if (1;’”’) ~1,
that is a(l—bd)={ ~ = ;1,~”7bd2
—a(1+bd) if (i—) Y
’ w0 U br e
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Thus Zo(1+bd) = 1+ 2Z4e(1+bd), where X+ is the sum over a half-system + b mod g, b¢pnx
so that (1 +&d) is a quadratic residue. Hence, mod 2&,, we have

Za(l+bd)=1+g,

where g is the number of non-zero classes 4 mod px with (1 ;bd) =1,
r /2

Observe that K* < F*2, Precisely half of the elements {1 4 bd},%,, 1, d are quadratic residues.
1 clearly is, and, as r = +1, d is a non-residue. Therefore g = (Npg+1) —1 = }(Npxg —1).
Hence, as Npx = 1 mod (4),

1+g= (W?&) mod (4),

and thus Xo(1+58d) = 2 mod 28,. This, in conjunction with (5.8), yields (5.11).
Npg Y

Next we assume that Npx = —1mod (4). We have to show that
Sa(l+bd) = AK:F, (5.12)
v
We reduce the proof to the case K = Q,,. In view of (5.4), Npg = 47, f odd. Thus we can find an

Abelian character o, of F;, the non-ramified quadratic extension of Q,,, with the property that
when a and a, are viewed as residue class characters

o = a0 Nig .

Thus by restriction a| . = a,|Fj0Ng,. Choose ce K* so that ¢Dx = px Dx and trgy (¢) =
p~1 (where M is the maximal non-ramified extension in K). Then, by (3.6)

() = —a(ct) G(a)
= —a(c) Glag)®: P by (3.4).
Similarly T9(at| o) = —a(cd) G(%IF;)(E:F,,),

) (Gl )E50_ (7ot )"?‘F”’.

T n)  \G(ot]g) - 79 (oo @)

Trivially we see a(2) = oc,,(2)<’z ‘Fp), Therefore by (5.8) and the corresponding formula for o, we
get

and so we have

Za(1+bd) = (Zotg(1 + by dy) ) K ¥l (5.13)

with the obvious notation on the right hand side.
So now it remains to establish (5.12) in the case K = Q,, and to prove propositions 1 and 2. Asin
§1, we write
Ale) = Zo(1 +bd),
where now K = @, and F'is the non-ramified quadratic extension of Q,,. By (5.8), A(«) is certainly
independent of the choice of d (i.e. proposition 1 (i) holds). We shall assume that % = — 1 mod ().
Moreover, to fix the notation, we write

p=-1+2"1mod (2¥), N=>3

and 7 is always a primitive 2¥th root of unity. Further, we shall now work with the actual elements
of F 2, and the symbols 4, d etc. should be viewed in this way. In particular, a will now be viewed
as a character of F}..

21 Vol. 208. A
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Multiplication by an element  of F}s replaces the set consisting of d and the 1 + bd by a set yd,
{ys(1+0d)}, where y, y, € F}. (This is because d, {1+5d} are a set of representatives of the cosets
F3:/F}). As o takes only values + 1 on F%, we see that

o(u) [Zb} a(1+bd)+o(d)] = [Zb}oc(l +bd) +o(d)] mod (2),

and choosing () = 9 we conclude that
(A(e) +(d)) (g —1) = 0mod (2).
A(x) = imod (2(p—1)-1). ' : (5.14)
Next note that a(l—bd) = a(1+bd)~2+2" " = g(1+bd) 0(1 +bd),

But a(d) = +i, whence

where 6 is the quadratic character of F}.. Taking complex conjugates we get
Ao) = Za(1—bd) = Za(1+bd)6(1 +bd),
and so Ale) +A(x) = 22+ (1 +bd), (5.15)
Al) = A(x) = 2Z-a(1 +bd),

where 2+, X2~ are sums over those b for which 1 + 44is a square, a non-square, respectively, in F.

Now because Fj < Fj, exactly half of the set d, {1+ bd}, are squares. But dis a square, hence
the sum 2~ has (p+1) terms, each congruent to 1mod (y—1). Thus X-(1 +bd) = 0mod
(7—1), and hence A@) —A(@) = 0mod (2(7—1)). (5.16)

Now suppose, for a contradiction, that A = A(x) = imod (2). Then put A —i= 2¢, for an integer

£in Q(9). Then (A=1)— (A=1) = 2(—%) = 0mod (2(y—1)),

and so by (5.16) 2i = O0mod (2(y —1)), which is a contradiction. Therefore

A # imod (2),
ie. Asi(l_l_nfl) =i(2i:)mod(2). | (5.17)

As before 4, denotes the residue class of A(f)mod2Q, ie. 4, =+i(p—1)/(p+1)-
(= * cot (m/2")) mod 28,, with suitable choice of sign.

We next wish to show that the class 4,, of A(x) mod 28, does not depend on the choice of a.. As
the other characters of F}: of order 2V are precisely the conjugates & of & under the action of
Gal (@(9)/Q), and as A(a®) = A(x)®, it suffices to prove that ‘

A = 2A2mod (2(n—1)). (5.18)

We do this without ramification theory. Because we already have (5.16), it suffices to establish
(5.18) for Galois automorphisms w, so that

© =19 e=1+2"mod(2r+), r> 2.
One then verifies quickly that

(721) = (7) moa -

and in view of the form of A4, this proves (5.18).
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(5.10) and proposition 1 (apart from (iii)) have now been established. For the moment let & be
the element of Gal (Q(7)/Q) with #® = —y~'. Then ¢ is the Frobenius of p in Q(7)/Q and so
o(1+bd)? = a(1—bd). Hence A(a)® = A(e) eQ(n —9~1), and so A(a) is of the form

A@) = a+b(n—171),
where a, b are integers of the maximal real subfield Q(»2+7%~2) of Q(y—»~1). By (5.7) and
theorem 3 (i) we have A(e) A(e) = p (which is proposition 1 (iii)). Clearly
2a = A+A,
2b(n—n7") = A-4,

yielding, by (5.14), the expressions for ¢ and 4 given in proposition 2 (ii).
We now prove proposition 2 (i). For the first part expand (1 + 4d)® by the binomial theorem and
then sum over all 4. The result then follows by use of the congruence mod (/)

L[ 0 if p—1fr
3 ={-1 if p—1|r.

Because pis completely splitin Q(n — ), and because A(x) A(a) = pis the value of A(x) under the
norm from Q (7 — 1) to Q(n2+7~2), we see that precisely half the primes p above p divide A(x).
However, since A(x) A(@) = p, A(«) is divisible only by primes above p, and so the result is
established.

Finally, to establish uniqueness, observe that the given value of the ideal (A(x)) determines
A(«) up to a unit, and then the norm equation A(x) A(«) = p up to a root of unity in Q(y —772),
and, finally, the congruence mod 2(n — 1) fixes the root of unity.

6. INDUCTIVITY

Our procedure is as follows. We always work in the context of a given extension N/K. After
establishing inductivity modulo roots of unity in 6 (a), we first prove the inductivity of 7 for all
N/K, with Gal (N/K) = I" Abelian. Hereafter, we shall work with the induction hypothesis that
inductivity holds for all Galois extensions N'/K’ with [N": K] < [N:K].

As in §3 we use the notation

I'=Gal(N/K), A<TI, F=NA (6.1)
For inductivity we have to show that for all ye R(N/F)
7(Ind% x) = 7(x) 7(Indk ep)dee @, (6:2)
6 (a). 7(x) 7(Indk €5) @ 7(Indk )~ is a root of unity.

Proof. For short we denote the expression in 6 (@), by #(x). By theorem 2 (proved in §3), as
applied to complex conjugation o, 7(Indgez)® = +7(Ind%ez). This, in conjunction with

theorem 3 (i), yields +7(IndE 6)? = Nf(IndEep) = Nb(F/K).

Now it follows from theorem 4, and from the inductive property of norm resolvents (2 (c)), that
#(x) is a unit. By theorem 3 (i) and 2 (a) we see that |z(x)| = 1. But from theorem 2, u(y)® =
pu(x®) p' for some root of unity z'; whence |u(y)?| = 1 for all w e 2. This implies that u(y) is a
root of unity.

21-2
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Note that in (6.2), if /K is non-ramified, then
7(Ind% ep) = Appix(Dx)

and so we know by 3(b) that (6.2) holds in this case. In view of the solubility of I, by the
transitivity of induction, we may always assume that

[I:4] = (aprime number), (6.3)
and, by what we have said previously, we can also assume
F/K is totally ramified. (6.4)

LemMA 2. With notation as above let £ be an Abelian character of Gal (N/K), and suppose &| 4 is ramified.
Then (&) = AEYI) 7(&).
Proof. Choose ce K such that ¢Dx = Dg Py, then by lemma 1

7(£la) = %Aﬁla(ufl) Yw(ue),

where the sum is taken over a set of representatives u of O » mod pp. Indeed, because /K is totally
ramified, we can choose the « to lie in K. Also, by the commutativity of (2.3), 4¢|, = A£0 Ngx;

thus we have
7(£ls) = %Aé(uc‘l)’?ﬁx(luc“‘)

= 48071 7(8).
6(b). (6.2) holds if I"is Abelian.

Progf. We may assume y to be an Abelian character (by additivity). If {a}i=% are the distinct
Abelian characters of I'/4 = Gal (F/K), with a, = €x say, then

-1
Ind% €p = 2 &,
i=0

-1
Indﬁx =2 gai:
i=0
where £ is some Abelian character with |, = y. Thus we must show
-1 -1
.1__10 7(§;) = (&) iIJOT(“i)- (6.5)

First, if y is ramified, then (6.5) follows immediately from lemma 2 and (3.8). On the other
hand, if y is non-ramified, then we can choose (uniquely) £ to be non-ramified. We then have

7(8]s) = AE(Npix Dy) ™t = AE(Npix (05" D))~
A
Also, trivially, 7(8ay) = AE(Dg) ™t = AE(Dy) 7 (%)
while by theorem 3 (if) for 0 < § < /
7{82) = AE(DR)AEPD) 7(o).

One may now verify (6.5) directly.
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From now on we assume (6.2) to hold when N, F, K are replaced by any triplet of fields N,
F',K'with[N': K'] < [N: K]. Clearly, by additivity, it will suffice to take yy irreducible, and also,
if convenient, we may assume that the representations associated with y are faithful on I'.

6(c). Itsuffices to prove (6.2) under the further hypothesis that y is Abelian.
Proof. We let X' (resp. £2) be the centralizer of I (resp. I n 4) in I'. Thus we have a tower of

Galois groups:

INnd

(6.6)
QN4

NN

As in 3(a), we put y = Indj ¢, where ¢ is an Abelian character of 4 and 4 = 4 n I. Because
Ind£ y can be assumed faithful on I', we may assume ¢ to be faithful on 4 n I. On the other hand,
because y is irreducible, we must have that A is the centralizer of 4 n Iin 4, namely 2 n 4.

If, first, ¢ is non-ramified, then because y is irreducible we must have 2n 4 = 4, and ¢ = y;
thus y is Abelian.

So now suppose ¢ is genuinely ramified (so that 4 n I # {1}). We put 6 = Ind$"4 ¢. Then by
our non-ramified induction formula in 3 ()

7(Ind§ 0) = 7(0) 7(Indf e,)

IfQ =TI, then again 2 n 4 = 4, i.e. x is Abelian. Otherwise, we may apply our induction hypo-
thesis to 6 and 2 and get
7(0) = 7(Ind2"? ¢) = 7(p) 7(Indg"¢q, ).

We are required to show that
7(Indf x) = 7(x) 7(Indfe,) 8 %,
ie. . : = 7($) 7(Ind3"“ €9,,) 7(Indf €,) 3% %,
and since Indf 6 = Indg y it is enough to show that
7(Ind§"? €50,4) 7(Indf €,)! = 7(Ind§"? €5, ,4) 7(Indf e, )dee %,

Clearly all four characters in this expression factor through the proper quotient of I', I'/4n I. So,
by induction hypothesis, the above equation follows from (6.2) on evaluating 7(Indg"4¢,, ),
inducing first through 2 and secondly through 4.
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So now we are in the situation where y is Abelian, [I": 4] = / and F/K is totally ramified. We
are required to show (6.2). We remark that, because [4, 4] = 4 n I and because we may assume
X|an1to be faithful, 4is Abelian. As before 2'is the centralizer of /in I', and we have a tower of the
fields and Galois groups

N, {1}

-
A

If ¥ =T, then I'is Abelian and this case was dealt with in 6 (). Hence we shall assume that
X # Iy and so that 2’ n 4 # 4.
For a finite group X, we denote by X, an /-Sylow group.

(6.7)

Kr

6 (d). Suppose that (In4); = 1, i.e. we have a decomposition I = (I n 4) x . Then I'/X is of
order f, f > 1, f| -1, and this group acts faithfully on I,. Let 6, be the unique Abelian character
of I' such that |, = €, 0|, = x, and let {;}i—% be the Abelian characters of X such that the
;| are the distinct non-trivial Abelian characters of I, and so that o;| ny = €4nz- Define
Bi=0a;0p|5 (i=1,...,1—1). Finally let o;;, ¢ = 1, ..., ({— 1) f~%, represent the distinct orbits of
the {o;} under the action of I'/X. Then the characters

$; = Indfa;
fori =1,...,(l—1)f, are irreducible and distinct. Similarly the characters
0, = IndZ (2 Ols), i = 1,00y (1= 1) f1

are irreducible and distinct. Finally, we have
=1t
Indfe, =+ X &5
i=1

-5t
Indéy =6,+ Y 0,
i=1

Proof. As I = AI, and as both 4 and I are Abelian, I" centralizes 4 n I; thus X, the centralizer
of I, is the centralizer of . Hence I'/X acts faithfully on the group J; (of order /), and so, as X' # I,
J > 1and f|!—1. Dually I'/X acts faithfully on the «;|];, and hence, in turn, on the ;. Thus, by
3 (a), the characters ¢, are irreducible, and the ¢;,7 = 1,..., (/— 1) f~' are the distinct ones among
them. The same reasoning applies to the ;- 0,y|; and the 6, so yielding our assertions.

Finally, 6, is Abelian, hence irreducible and distinct from the 6, ( > 0). Now by Frobenius

reciprocity
(Indfes, ¢;) = ((Indfes) |z ),

where (, ) is the standard inner product on the group of characters. The right hand side is 1, since

by Mackey’s restriction formula
-1
Indfe,|z = Indi™egns= €z + '210%'-
i
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Likewise (Indfes,€r) = (€456r|a) = (€45€4) = 1.
Thus, by comparing degrees,
t-nft

Indfe, =+ X ¢
By Frobenius reciprocity = :
Indiy = 6, Indfe, = Ouler +6,)
= 0+ 3 Indf (o Oy5) = Op+ 20,
and so 6 (d) is now shown. ' '

6(e). If (In 4), = {1}, then (6.2) holds.

Proof. Let g = (I—1) f~1. Using 6 (d) and cancelling a factor 4p;/x(Dg)? from both sides, we
see that (6.2) is equivalent to

(06].) 11 7(e) = 7(00) 11 (s boly). (6.8)
First suppose that y = 6|, is non-ramified. Then 6, is non-ramified, and so
7(0o) = Aby(Dg) ™, 7(0o|.a) = Aby(Npysc D)™ = Abo( D p'c") ™,
since Dp = pDg. Also
7(0t5 Ol 5) = 7(0t5) AOp(Npyc (D)) ™" = 7(et;) AOy( D x) .-

On collecting all the factors, (6.8) is seen to hold. So now we assume that y is ramified. Then some
prime ¢ (different from / and p) divides the order of y|;q -

First we show that .
7(0o|4) = 7(6y)'mod &,. (6.9)

Now by lemma 2 7(0o]4) = 405 (1) 7(6}),
while by the binomial theorem, with the usual notation,

7(0,)! = ZAO (uc™) Y (leu) mod &,
Le. = A05Y(l) 7(6}) mod &,.
This proves (6.9).
Next we apply 3 (¢) to a; — ez and ;- 6| — 0| 5, and we obtain

7(a;) = —1, 7(2;05|5) = 7(0o|5) mod ;. (6.10)

Now by (8.7), 7(6y|5) = (—1)*7(60,)7. From this equation and from (6.9) and (6.10) we con-
clude that the two sides in (6.8) are congruent mod &;. We shall also show that they are congruent
mod &, i.e. that

T(aold)iljl () = 7(6,) iljll 7(2;0p)) mod &, (6.11)

By 6 (@) the quotient of the two sides in (6.8) is thus a root of unity which is congruent to 1 mod &,
and mod £,. Hence this root of unity is 1, which yields 6 (¢).

It remains then to establish (6.11). Let 6, = 6 0g, where 605 has g-power order and 6}, has order
prime to ¢. Then ¥’ = 65|, and the a; are all characters of I'/I,, and so, because I, # {1}, by our
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induction hypothesis (6.8) will hold if 6, is replaced throughout by 6;. However, by 3 (¢), we have

congruences mod Lo (e Ools) = 7l B3,

7(0,) = dr(6y) and 7(6y|,) = dr(0g],),

1 if 6 is ramified,

where d= { . . .
—AOy(pp)~t if 0 is non-ramified.

(6.11) is now immediate, and so 6 (¢) is now shown..

6 (f). Suppose now that (In4), # {1}. Then I'/X is of order / and acts trivially on all Sylow
groups I, for ¢ # . A generator w of I'mod X acts on a generator o of /; via

wlow = o1, (g,l) =1, o' =1,
when [is odd, or, if [ = 2 with ¢ > 2; while if / = 2 with ¢ = 1, then
o low = o
Let {o;} be the non-trivial Abelian characters of 2'//2' n 4, viewed as characters of 7, and let «;
be the extension ofa; to I"such that«;|, = €, (recall that by the above I'/4 n I'is Abelian!). Then

-1
Indée, = ‘Ela§+er.
z=

Further, if £ is an Abelian character of X' such that |5 = X|4ns, then

Ind2y = Indip
and this character is irreducible.

Proof. Both 4 and I, and hence I" = 4-1, commute with 4 n I, hence with I} and with all Sylow
groups I, (for ¢ 5 I). So now the cyclic group I'/Z acts faithfully on J; and trivially on I}; thus
(I':X) = . It now follows easily that

wlow = o (g,]) =1,t> 1,

where order (o) = [t+1, In particular, if/ = 2 and ¢ = 1, then ¢ has order 4 and w~low = oL

The formula for Ind4 ¢, is immediate as the «; are the distinct, non-trivial, Abelian characters
of I'/A. Next recall that ¥|;,, = f|1n4 is faithful; hence f|; is faithful and so X' is the stabilizer of
B. Therefore, by 3(a), Indf g is irreducible. Now by Frobenius reciprocity

(Indf ¥, Indf ) = (Indf x|, 8)

and the right-hand side is 1 since, by Mackey’s restriction formula,
(Indf %)|z = Indg"® (B|zna) = B+ 3 Pty

So because Ind2 ¥ and Indf g have the same degree, with the latter being irreducible, we
deduce Indf y = Indf g.

6(g). If (In4), # {1}, and if for some prime ¢ (# ) 4, # {1}, then (6.2) holds.

Proof. We are required to prove that

(8) TT (@) = 7(8) Apuax(Dy). (6.12)
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Let y = x'x", 8 = B'p”, where x", f” have g-power order and y’, #’ have order prime to ¢. Then
x’, B’ are still ramified being non-trivial on (I n 4), # {1}, and we are again in the situation
described in 6 (f). Hence, by our induction hypothesis (applied to I'/4,), the analogue of (6.12)
holds for y’, A’ in place of y and f. Further, by 3(¢), we have congruences mod &,

T(x) =7(x"), 7(B) =7(F),

whence we deduce that the two sides of (6.12) are congruent mod &,.

Using the argument used previously (based on 6 (a)) we shall establish (6.12) by showing that
the two sides are also congruent mod &,.

So now let ¥ = x*x**, f = f*B**, where y**, f** have l-power order and y*, f* have
order prime to /. Let I = I; x I*. Because y and f coincide on I n 4, they will coincide on I*, and
so x* and f* are either both ramified or both non-ramified.

First, we assume that they are both non-ramified. Then, by 3 (¢), we get that mod &

7(x) = —Ax*(pp) 7 7(X*) = — Ax*(0p D)
7(B) = —Ap*(pr) 7 r(F*) = —A*(pr Dp)

Now x* and f* are both Abelian characters of the Abelian groups 4/4 n 1, and X/4 n I, which
coincide on their intersection inside the Abelian group I'/4 n 1. Hence they have a common
extension ¢* to this latter group. So by (2.3) and lemma 1

AB*(prDp) = Ap*(Nyxpr Dr) = 4¢* (g D),
Ax*(op Dp) = Ap* (Npic¥p Dy) = A9* (0x Dx)Ys

thus we have 7(x) = 7(f) mod &,.
Now ifl # 2, Appx(Dg) = 1, 7(¢;)’ = —1mod & and so IT}Z} 7(a;) = 1 mod &; while if = 2,

then
Aprix(Dg) = 1 = 7(o;) mod .

Thus we obtain the required congruence mod &, when y* and £* are non-ramified.
So next assume that y* and #* are both ramified. Let ¢ * be the common extension of ¥* and
B* to I', as above. We have

-1
Indf x* = ¢*+ X d*a;.
i=1
So, since all these characters are characters of the Abelian group I'/I,, by 6 (b) we have
-1 1-1
() T r(ed) = 7(9%) T (%),

1-1
Hence, by 3(c), 7(x*) I 7(et;) = 7(¢p*)'mod &,. (6.13)
i=1
But by (8.7), because (— 1) = 1mod (/),
7(8*) = 7(¢*)'mod &,
and also Aprix(Dg) = 1mod &,

Thus, by 3 (¢), the respective sides of (6.13) are congruent mod &; to those of (6.12). Hence we
have the required congruence mod &, which completes the proof of 6 (g). ‘

22 Vol. 298. A
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6(h).If 4 = 4, and (I n 4); # {1} then (6.2) holds.
Proof. Again we have to show (6.12), and now I'is a group of [-power order. First take / odd.
As Ind{ ¥ = Indf B, we have the two expressions for the determinant of this character
Ve X Pric = Vi B P, 1€ Vo X = Viyx B 38 ppix = P = €x

(since [ odd). By theorem 6 (a) and by 3 (), we see that
7(f) = 7(Indf §) = 7(Vpixc ) Ax (1)~ mod (2).
But, as F/K is totally ramified,

7(x) = 1%(4x) = ZAx(uc™?) Yrp(uc™)
= Ax(I7) 7% (Ax| &)

= Ax() 7 7(Verz %),

and so 7(y) = 7(f) mod (I). Trivially Ap;x(Dg) = 1; also the a; occur in complex conjugate
pairs and by 3(¢) 7(a;) = —1mod &, Thus 7(x;) 7(@;) = 1 mod &;. But by theorems 2 and 3 the
left-hand side is Nf(e;), an integer. Hence 7(a;) 7(@;) = 1 mod (). So now we can conclude that
the quotient of the two sides in (6.12) is congruent to 1 mod (/). But by 6 (a) this quotient is a
root of unity so, since / # 2, the quotient is 1.

From now on then we take / = 2, and we consider separately two cases. First we shall assume

that ;
Indf y = IndZ (= psay),,

is of inversion type; so that by 6 (f) f|; has order 4. From (5.4) N, = — 1mod (4), and, by the

quadratic reciprocity law,
2 2
000 = (), = 5) = 42

From theorem 6 (5) part (i), we get that mod 2 &,

Aoy (2) 7(dety) Adety(pg) ™t = 7(P) (6.14)
= 7(8) 4prix (Dg)-
On the other hand, because /K is totally ramified, as usual we have
T() = T(Ax) = DAy (e (6.15)

= Ax(2)7r(Ax|x) = AVpie X(2) 77 (Vi X).-

Since Vg X = oy dety, with dety non-ramified, by theorem 3 (ii) we have

7(x) (@) = dag (2)-r(dety) A dety(pre) “Hr(e)?
= 7(8) 4p1xc (D) 7(e)*mod 28, by (6.14).

But from theorems 2 and 3 we see that
(o) = (Np ) Ny = 1mod (4).

So, indeed, by 6(a), (6.12) holds in this case.
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We are left with the case when ¢ = IndJ yis not of inversion type. By 6 (f) and (5.4), Npx = 1
mod (4), and, by theorem 6 (5) part (ii),

7(B) 4prix(Dx) = 7(9)

= —r(det,) Adet,(2)-1 ( N123K

) mod 28,.
On the other hand, as above in (6.15) we obtain

7(x) = Aoy(2)7 Adety(2) 2 7(dety) 7(0g) J(ory, dety)

= (Nimc) Adety(2)-'7(det,) [7(a}) J (g, det,) ]

7(ay) T(dety)
7(ay dety)

> Aoy (x) A dety (y)

2+y = 1mod
xy & Omodp pK

Here J (g, dety) =

is the Jacobi sum (Davenport & Hasse 1935, (0.6)). (Note it is crucial in the last equation that
ay,dety and oy dety = Vi ¥ are all ramified. For Ve x and o4 this is immediate as F/K is totally
ramified. Also dety = Vi f-pr/xc is ramified as pp/ is non-ramified and V7 £ is ramified by
(5.5)). H ’
(5.8)). Hence 7(8) ApuDe) _ I, dety)
7(x) 7(ea) 7(0)?

As before we see that 7(z;)2 = 1 mod (4). To complete the proof, we note that

Tossdety) = (% [Azi(1~y) +1]dety () +1
’ K

( E Adety(y)) +1,

Aul(y) = 1

=2 (N—EK—:—?I) +1mod 28,

mod 29,

2
= — 1 mOd 282,

as the number of y # 0, 1 which are squares mod px is $(Npx —3), and since Npx = 1 mod (4).
This completes the proof of 6 (%), and so the inductivity of 7 is now shown.

Proof of theorem 5 (iii). This now follows straight away from theorem 5 parts (i) and (i), from
theorem 1, from the weak version of 5 (iii) already proved (in 3 (¢)), as applied to the Abelian
case, and from the fact that kerd, , is generated by virtual characters induced from virtual
characters a; —a, of sub-groups 4 of I' with a,, @, Abelian and o, —a,ekerd; , (Deligne 1973,
proposition 1.8).

7. UNIQUENESS

Throughout this section we consider a homomorphism g: R(£) - @Q*, such that
(i) g(a) = 1(4e) for o € R®(k), »
(ii) g|su satisfies the same equations as 7|g given in theorems 24, 5 (iii) and 6. (Recall that
S(k) = ker (det: R(k) — R®(k)).
We put #(y) = 7(x) g(x)~*. Our aim is to prove that 1(x) =1 for all XeR(k) Clearly s
additive and p(a) = 1 for Abelian characters a. It thus suffices to prove that #(y) = 1 for non-
Abelian irreducible ¥.

22-2
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7(a). p(x*) = p(x) for all we Gal (Q/Q), and p(y) is a root of unity.

Proof. Clearly S(k) and R (k) generate R(k). Thus, by conditions (i) and (ii) on g, and by
theorems 2-4 as applied to 7| gy, g will in fact satisfy the same equations as 7 as given in theorems
2, 3 and 4 for the whole of R(k).

By theorem 2 it now follows that #(x®) = #(x)®. From theorem 4 we see that x(y) is always a
unit, and by theorem 3 (i) |#(x)| = 1, for all w e Gal (Q/Q). Hence () is indeed a root of unity.

We shall now work inside R(N/k) for some given normal tame extension field N/k. Because
u#(x) = 1 whenever Gal (N/k) is Abelian, inductively we shall assume the hypothesis of unique-
ness to hold for R(N’/k) whenever N’/k is normal and [N’: k] < [N: k]. More precisely we shall
assume that #(y) = 1 whenever y is not faithful on I.

In the sequel let y be a faithful irreducible non-Abelian character of I" = Gal (N/k). Let
x = Indfa, where « is an Abelian character of a subgroup X' containing the inertia group I.
Because y is faithful, «|, is faithful and because the commutator group [Z, 2] < I, X'is Abelian.

7(b). If I'is an l-group, then u(y) = 1.

Proof. Indeed x —det, €S5(k), so by theorem 6, which gives formulae for the values of 7 (and
whence of g) on y —det,, we see that u(y —det,) = 1 mod (/) (resp. mod 28,) if/ # 2 (resp. ! = 2).
Since all roots of unity are distinguished mod (/) if / # 2 and mod 2&, if / = 2, we deduce
#(x—det,) = 1. Now det, isan Abelian character,so thaty(det,) = 1. Henceweseethat x(x) = 1.

7(c). If the order of X' has two distinct prime divisors, / and ¢ say, then x(y) = 1.

Proof. Let a = g o*, where a is an Abelian character of [-power order, e, one of g-power
order and a* one of order prime to /g. Let

A0 = Ind¥(a,a*), ¥@ = Ind¥ (ma*), ¥© = IndZ(a*).

Then y - x¥, y@— y©®ekerd,, and applying the same reasoning for ker d,, we see that ¢ = y—
X0 —x9 + x© is an element of ker d; n kerd, n S(£). (The inclusion in S(k) follows by evaluating
dety = Vo (oo a®- (o *)~Hoya*)~la*) = e.) By theorem 5 (iii), we get

u(P) =1mod &, p(¢) =1modg,.

Hence #(¢$) = 1. But y, x@ and y© are faithful on proper quotient groups of I', hence, by induc-
tion hypothesis, #(¥®) = u(x¥9) = p(¥®) = 1, and so we see u(x) = 1.

We are now left with the case when X' has l-power order, but when I" does not have /-power
order. We now consider this situation in the following:

7(d). Suppose that X has /-power order and that I'/2 has a sub-group = of order m > 1, prime
to [ which acts faithfully on 7 (= ). Then u(y) = 1.

Proof. We remark that because Aut (1) is a 2-group we must have / # 2.

The Abelian [-group X'is a module over the integral group ring Z;Z (where 5 acts via conju-
gation). Because m |/ — 1, and because Zj* contains the (/ — 1)st roots of unity, 2 splits up into a sum
of one-dimensional modules. We let B (resp. 4) be the sum of the one-dimensional modules with
trivial (resp. non-trivial) action. As Z acts trivially on 2'/I, we see that 4 < I, and, since 5 acts on
I'with no fixed points except 1, we see that 4 = I and so we have a decomposition

Z=IxB. (7.1)
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We may write @ = f¢, where 8|5 = ¢, ¢|; = €. Thus ¢ is the restriction to 2 of a non-ramified
character ¢’ of I. Now let £ = IndZ 8. By Frobenius reciprocity y = ¢’-§, and by theorem 3 (ii),
wesee that u(x) = u(&). If B # {1}, then £ is a character of a proper quotient of I"and so x(§) =1,
and hence p(y) = 1.

So now we assume that B = {1}. The action of I'/2 on I yields a dual action on the powers of «,
and in fact — denoting the field of values of @ by Q(et) ~ we have an injective group homomorphism

J:I'/2—>Gal (Q(x)/Q)
given by a(ov) = a(o)i@,

This implies that Q(yy) < Q(o)™®. Because Im (j) possesses a subgroup of order m prime to /,
m > 1, the only /th root of unity in Q(x)™®, and hence in Q(¥), is 1.
If €4 = Indfe, we see that det,_,, = V- « is a character of /-power order with values in

Q(x) = Q(x —ex), hence det,_,, = ;. Thus we see y —ex eker d; n S(k), and so, by theorem 5 (iii)
u(x—€x) = 1mod .

But, by 7(a), p(x —ex) €Q(x —€4), which possesses no l-power roots of unity except 1. So,
because roots of unity of order prime to ! are distinguished mod &, (¥ —¢€x) = 1 and thus
#(x) = 1, since e, is a character of a proper quotient of I.

8. REAL-VALUED CHARACTERS

In this section we study the subgroup of real-valued virtual characters of R(K), which we
denote by Rg(K'). Throughout this section we shall assume p to be odd. (The case p = 2 s easier,
but different.) Modulo the group of virtual characters of the form ¢ + @ (¢ being the complex
conjugate of @), Rg(K) is generated by irreducible real valued characters (see Serre 1971, 13.2).
Let 4 be a finite group. A representation 7" of 4, and the corresponding character ¢, are called
dihedral (resp. quaternion) if there exist generators o, w of 4 mod ker 7, such that

Tto) = (z 7791)’ T(w) = ((1) 0(1)) (diedral,
(_1 0) (quaternion),

where 7 is a primitive mth root of unity for m > 2.
Again we adopt the notations used in previous sections. In particular I" = Gal (N/K).

ProrosiTiON 3. Let y be an irreducible real-valued character of I'. Then either (i) x is Abelian (i.e. x is
quadratic or ¥ = er,), or (ii) there exists a subgroup A, I < A and a character ¢ of A, which is either dihedral
or quaternion, so that ¥ = Ind{f @. x determines A uniquely and determines ¢ uniquely up to conjugacy, i.e. to
within the substitution ¢ for yeI. Conversely, characters of the form y = Ind2 @, where A is the
stabilizer of ¢ and where ¢ is dihedral or quaternion, are both real valued and irreducible.

Proof. We use the earlier result 3 (a). Let ¥y = Indfa, with X' > I and « an Abelian character of
2. As yisreal valued, we also have y = Indf@ whence there exists w ¢ I'with®a = & = a~1. Clearly
Yo = a, i.e. w2eX. We now take 4 = {Z, 0). Because “a = & we see that kera <1 4. We choose
o € X'with image a generator of the cyclic group X/kera. Then w and o generate 4 mod kera, and
now we put 9 = «(0). The remainder of the proposition is now immediate.
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If y is an irreducible real-valued non-Abelian character we adopt the following notation. With
2 and 4 as in the proof of the previous proposition we write N* = L and N4 = E. We say that
¥ is of dihedral type (resp. of quaternion type) if the character ¢ (as above) is of dihedral type
(resp. of quaternion type). There is a simple criterion for distinguishing between dihedral and
quaternion type. Recall that dety = py Vg is now non-ramified.

PrOPOSITION 4. Let ¥ be irreducible, real valued and non-Abelian. Then either (i) x is of quaternion type
and det, = €, so that in particular A det, (px) = 1, or (ii) ¥ is of dihedral type and A det, (px) = —1;n
particular detx # €p.

Proof. This is clearly true if K = E, i.e. if y = ¢. But, as deg (¢) = 2, from the general formula
for the determinant of an induced character we get det, = Vg dety p%%?, i.c.

detx = I/E/K det¢. (8.1)
Since E/K is non-ramified, Oz px = Pz, and so by (2.2) we conclude that
Adet, (pg) = Adety (Pg)- (8.2)

The result is now immediate.
We shall be specifically interested in values of 7 on real valued virtual characters with deter-
minant e, or, which is the same, on virtual characters of the form y — det,, where y isreal valued.

THEOREM 8. (i) If x is a real-valued virtual character, then the Artin conductor §(x — det,) is the square
of an ideal (in K), and 7(x — det,) is a rational number and a 2-adic unit.

(ii) Letu(y) = +1 be such that '
u(y) = 7(x —det,) mod (4).

Then u(x) (Nf( —1 )= W(x—det,) = sign (r(y — det,)),

x —det,)?
where W (x — det,) is the local root number defined in (1.4).

Also u(x) is given by the following:
(a) If x is irreducible non-Abelian, and if e, denotes the order of I/ker (¥|;), then

—1 \3dez (@ i
u(y) = — (N—p;) Adet(pg) if e, =1mod (2),
= Adet,(pgx) if e, =2mod (4),
= A detx (pK) VN(NpK) ?f ex = OmOd (4)’

where 2N e,.

) If x = ¢+, then
-1
u(x) = Adet, (1) (W)
(¢) If x is Abelian, then u(yx) = 1.
(d) For any real-valued virtual characters x, §

u(x +£)/u(x) u(§) = [det,, det;],

where for real Abelian characters o, 8

1 if aorpBise,
[O&,ﬂ]= Adeta(_l) if af=c¢
-1 if o, B, apf areall different from e.
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Remark 1. It is clear now that for real-valued y, with det, = ¢, the Galois Gauss sum is deter-
mined uniquely by either (14) the modulus equation |7(x)| = Nj(x)} (see theorem 3(i)), or (15)
the ideal equation (7(x)) = (#xa, P(X)), and, in addition, either (24) the congruence 7(x) =
u(yy) mod (4), or (2b) the ‘congruence at infinity’ sign (7(x)) = W(x).

Also, from the equation

Wix) = u(x) (ﬁfl)l)

we see that the above theorem determines not only «(y), but also W(y).

Remark 2. Ttis clear from the above theorem that the restriction of 7 to real-valued characters of
trivial determinant may be viewed as a function into any ring in which p is a unit.

Proof. If first  is an actual character, then we re-word the definition of f(y). Let n, be the
number of eigenvalues, distinct from 1, of a fixed generator of I under the representation associ-
ated with y. Then f(y) = p&. As ¥ is real valued, the non-real eigenvalues occur in complex
conjugate pairs, and 50 n4e4, = 1, mod (2). Thus we see f(x —det,) is a square.

Observe that for any virtual characters y, £ we have

x —det, + & —det, = (y +&—det,,;) + (det; det, —det, —det;).

Now for quadratic Abelian characters «, 3,

flap—a—-p) =1

if at least one of @, £ is non-ramified, and
. flaf—a—p) = p&’
otherwise.

So if y is a virtual character, choose an actual character £ such that y + £ is an actual character.
By the above f(x —det, + £ —det,) and {(£ — det,) are squares, whence (¥ —det,) is a square.

Because y —det, is real valued and has determinant ¢, we conclude from theorem 2 that
7(x —det,) is a real number. So because by theorem 3 (i) |7(x — det,)| = Nfj(x — det,)¥and because
Ni(x— detx)‘} is rational, we deduce that 7(y — det,) is rational and moreover as p isodd 7( — det,)
must be a 2-adic unit.

The first part of theorem 8 (ii) is immediate since

-1
— He——— )=
Ni(x—det,) ( T tx)) = 1mod (4).
Now suppose that, as in proposition 3, y = Indg ¢, ¢ = Indfa, where ¢ is either a dihedral ora

quaternion character. Then (x) = 7(¢) Apgix(Dy)? = 7()

and by (8.1) 7(det,) = 7(Vgx dety) = AVgr dety(Dg) ™t
= Adety(Dg)! = 7(dety).
Thus 7(x —det,) = 7(¢ —dety). (8.3)

The argument leading up to (5.7), in the case when 8 was a 2-character, still applies with Ax in
placcof f,and weget () _ 4V, o) 1r(Fime) Nop da(d),
where L = E(d) and d2e 3. This yields
7(¢ —dety) = — Npg- Adety(pg)* Ao (d). (8.4)
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If e4( = ¢,) = Omod (4), then Npy = — 1 mod (4) and, as in 5(b), we see that a(d) = vy(Npg),
where 2¥|¢,. This then gives
7($ —dety) = Adety(pg) vy (Npg) mod 28,.
In this case, because Npg = Np¥F:El = — 1 mod (4), we see that [£: K] is odd. Thus vy(Npg) =
vn(Npg), and so, by (8.2) and (8.3), we obtain the required result for this case.

]—\;51;), and so, by (8.4) and (8.3),

7(P— det¢) =4 det¢(pE) = Adet,(pg).
Hence, by (8.2), we obtain the required result.
Ife, is odd, then a(d) = 1 and, as always, Npy = Npidee, So again, by (8.2), (8.3), and (8.4),
we are done.
To show part (), we observe that from theorem 2 and theorem 3 (z)

Ni(¢) = 7(¢+ ) Adety(—1).
Part (¢) is trivial since for Abelian y
7(x —det,) = 7(0) = 1.

For part (d) we evaluate 7(a) 7(f) 7(«f) ~! and show it is equal to [«, #]. Ifo or #is e the result is
clear. Ifaf = ¢, thena = f, and so the result follows from part (). Finally, if, 8, af are different

If now e, = 2mod (4), then easily we have a(d) = — (

from ¢, then one of them, & say, is non-ramified. So, by theorem 3 (ii), the quotientis da(pz) = — 1,
and similarly if 3, or «f, is non-ramified.
Lastlyas (34 £_det,,,) — (x—det,) — (E—dety) = det, +det; — det

we obtain the remaining equation by the additivity of 7.

Remark 1. Instead of looking at virtual characters of determinant ¢, one could have considered
the group of real-valued virtual characters of determinant ¢ and degree zero. This group behaves
better with respect to induction. The question of values of 7 is the same, because we always have

that 7($) = (¢ —deg(@)-).
Remark 2. One can also determine explicitly the values of 7(«), for « real and Abelian. The
non-ramified case presents no problem. For ramified , choose c€ K* asin (3.6), so that

T(e) = —doe(c™t) G(4).
Viewing Au as a residue class character of K*, we see that Aa is given by composing the

Legendre symbol (2’) with Ng,. So by (3.4)

e =6 ()"
o) = - .
V4
Itis a classical result (see, for instance, Borevich & Shafarevich 1967) that
—1\ \}
¢((3)-(5)2)
? 7)?
(with the positive or positive imaginary square root). Thus

7(@) = — da(ct) (( _“;1_) p)ﬂ‘?:““zﬂ.

So if [K: Fp] = Omod (2), then 7(y) is rational for all (tame) real-valued ¥, and W(y) = + 1.
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